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Fraface

This report is the seventh concerned with research accomnlished

in connection with Navy Contract Honr=433(00}, betwscn Dunham Laborstery,

Yale University, and the Office <f Naval Research, Department of the
Navy., In this report is given a discussion of the solutions for a
pair of simultaneous nonlinear differential ejuations thav may apply
to phenomena of interzgt. Thess equations are studiced analytically,
and particular examples are solved with an analog computer,
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e ressarch arried on and the raeport written by the

undersigned,

e Js Cunningham

New Haven, August 1954
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Abstract
A pair of simultanecus nonlinear equations
ax/dt = (o, /k, )rk -x-~f (yﬂx
dy/dt = (ay/k )'x -v-f (xi]y

may represent problems of interest involving certain biological or
physical phenomena, These eguations, together with several special
caces, are investigated analytically and informaticn about their
solutions is obtained, A variety of aif’erent solutions can occur,
dependent upon the ceoeflficients in the equations and upon the coupling
functions fx and fy. Criteria are developed frouw which the propertics
cf the solutions can be predicted, Several nuserical examples are

solved, making use of an electronic analog computer,
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I. Simultaneous Growth Lgquations

A problem which has attracted thie attention of both mathematicians
and biologists is that of describing mathem: “icaliy the effects of
enviromment upon the populatisn of a species of animal, Une phase of
this problem involves the ef'fect of competition betwsen two different
species, Where tne two spscies o.ilsist on a common food supply, or
where one species is eaien by the other, or where additional effects
exist so that the porulation of one species influences that of the
other, a mathematical descr_ption of the situation must require
simultaneous differential sguaticns. In general, these equatiocns are
nonlinear and are more or less camplicated depending upon the number
of effects that are concidered.

Volterral has studied in some detril the case where the competition
equations are

dx/dt = x = (ax/kx)(kx - 8. y)x

dy/dt = y = (a /k )k = 8 x)y

W J J J

Here, t is the independent variable time, x &nd y are dependent
variables representing the two populations, and kx’ oy Bx’ ky, ay, By
are real constants, Coupling between the variables comes about through
the nenlinsar preduct term, xy; in each equation. The variables can
bz ssparated in thesc eguations and u solution found By o process parily
analytical and partly graphical, The nature of the solution depends
upon the cosfficients in the equatiouns. Among th~ possibilities are that
one speciss disappears leaving th- other, or that osciliations occur
in the populatione,

- ma me o e e e s em mm s vm e e mw e o me e W mm e mm M M o wm T e m wm ep e wm e ew

1. V, Volterra, La Lutte pour la Vie, (Gauthier-Villars, Paris, 1931),
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Somewhat more complicated equations have been investigated by

%= (cxx/kx)(k;)c -x - Bxy)x
y = (a,/1,)(k, = 7 = 8.x)y.
The extra terms in these equations provide a sort of damping effect and
insure that neither pojulation goes to infinity. The method of analysis
used by Volivrra is no longer appiicable, Again, a varietd;
is possible, depending upon the coefficients.
A still more complicated pair of equations has been suggested by

3

Hutchinson” as

ble

« il - x- 50k

= (e /) ~v =2 (Dly
VAV VA

(4.

where fx(y) and fy(x) are the functions coupling one varicble to
thie other., These functions are generally well-tehaved mathematically,
and it is required that fx(O) = 0 and fy(O) = 0, The functions
might be polynomials of the sort

£) = by + ny + 5

fy(::) = ny + 'yy 2+ Syx3 s
The equations of Gause and liitt contain only the first terms of these
polynocmials,

Equations of this same general sort might arise in describing
other types of physical phenomena, I'or example, certain linds of
chemical reactions progress at a rate that depends upon the amount of
each component present in the reaction., Simultaneous ecuations describing
the amount ¢f each component are guite similar to the competition

equations, Siudlarly, an electrical system can be conceived which also

am s m am mm mn am M e e m. Wy bt 4 wm me ma @m me me ms mm ma ma ma s me ma sw e 7 O e em se

2, G, F, Gause and A, A, Witt, American Naturzlist, 69, 596, (1935)

3, G. E, Hutchinson, Ecolozy, 28. 319, (1947)
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would te described by the equations., The two voltagss of a pair of d-c

'~ T VA e
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suitably connected, Two field windings on each machine would be

required, one excited by the machine itself and the other exc

a cross connection with the seconu machine,

In general, the equations apply to any situation where tun effechs
tend to grow with time, but the rate of growth of each is influenced

in some way by the other,

ITI, Most General Form of Eguations

II.1 Analysis of eguations

The pair of simnltanecns ogquations thot

0
- e ..

the most general form

ax/dt = % = (o /k)[k, = x = £,(r) ] (1)
ay/dt = 3 = (a /k)[k, = ¥ = 5 (] (2)

In these c¢/.ztions, t 1s the independent variable and usually represente

o IR '
<! Gyr Ko Ky
are real constants, Functions fx(y) and fy(x) are coutinuous,

time, x and y are the two dependent variables, and

single-valued, well-behaved functions that can be differentiated wita

espect to their arguments, Both functions vanish for zero argument,

fy(O} = 0 and fy(O) = 0, In many cases the functions take the form

A
of polynomials such as
¢ (v) = 0 v ‘72
L) =By 9 (3) :
. ¢
. - "
zy(x) Byx + v X (4)

where Bx’ By, Yy yy are real constants, It is through these

functions that coupling exists between the twe dependent variables,
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If there is no coupling betwecen variables x and v, i‘} {y} = 0,
and Eq, (1) becomes the Verhulst-Pearl equationl‘

% = (o /kI(k, = x)x, (57

This is an example of a Bernoulli equation and has the exact sciution

x = [l&-l + (xo-l - kx-l) exp(-axt)]-l (6)
where x = X, at t = d. Curves for X as a function of x and for
x as a function of t are shown in Fig. 1; with several initial
conditions, If |x°|<3(lgxl,' approximately x = x exp(ax@) and the
solution starts off as it would for a simple growbh equation having a
constant growth factor Qe With o positive, x always approaches
the valne kx, regardless of whather ¥, is positizre or negriiva,
If zy is negative, x passes through intinity and becomes positive
80 as to approsch a positive gx. The value x = 0 is thus a point of
unstable equilibrium, whiile the value x = kx is a point of stable
equilibrium,

With no coupling, fy(x) a2 0, also, and exactly the same sort of
solution applies for the equation in 'y as has just been discussed for
the equation in X,

In the more gener:l case where coupling between the variables is
present, it is necessary to consider thc complctc form of Egs. (1) and

(2), The nature of the possible solutions for these equations is most

easily studied by considering the single equation obtained as their
ratio,
k)k -y=-¢
o/ -y - £, (x)]y ' -
& " T LR

The independent varizable + has disappearcd in writing this equation.

- e S vy 8 e e s s e e M e mm M em an —l w4 W s em s wmt wmw o i  ew e mm e e e

L. A, J. Lotka, Elements of Physical Biology, (Williams and Wilkins,
Baltimore, 1923), p. 6L
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5 for Eq. (7) corresponding to

There are certain singular points

points of equilibrium, where both numerator and denaminator vanish

simultaneously. The values of x and y at one of these singularitics

are designaved as xs and y . The singularitics can be separated into

four groups as follows,

Gr. 1, xsf-'O, ys-=0

Gr. 3. X, = 0, - A ky
Gro he % =l = 1.07)y 5, * k, = fy(x)

The first three of these singularities are reminiscent of those which
would occur for a pair of Verhulst-Psarl equations with no coupling,
The fourth group may contain none, or a number of singularitiecs,
depending upon the properties of functions i‘x and f v

The nature of solutions for Eq. (7) near each singular pcint can
be explored by replacing x with (xs +u) and y with (ys + V),
where u and Vv are snall changes, This substitution gives the

equation

) g .

a /k )k +tkvemy =2y vey £ (xc)=v £ (x_Ju="~, (x)v

& _ Gyl ¥s * v T g = Ay 7 Yty (ng) T sty lnghu - £y (e)

. ; e | CR . .2 A e ey . AN gl o oae & f \ Fa

du a /K ks + - - - = e ol e
O/ K18 7 1 T A et T Tateed T Taty gl x*7s

o -

In writing this equation, series expansions for tle coupling fwictions

have been used,

1

£ Gy # %) = T 0R) » ENTIve & a ¢

[}

)‘.‘y(;\c’3 + u) fy(xs) + fy'(xs)u + 000

with

"

8/ [£,(r))]

. = ]
£10x,) = d/dx[fy x)]

U5, (ys)

5, N, Minorsky, Nenlinear lechanics, (J. W, Edwards, Ann Arbor, 1947),
Part I,




Only linear terms in u and v have boen rctained, At any singular

point, certain terms vanish,

"' = -Lx\ys):]x =0

[y =F fy(xs,,)]ys =

so that Eq. (2) become '
da (ax/}' )‘l £ - fx(ys)‘Ju * iﬂ.-xsfxl (ys)]v} : Y

This equation is of the form

v _ Au + Bv

& " Cu*iw (10)

where
A = =(a /k )y 1,0 (xp) (11)
B=@/%W%-m%-f§%a (12)
S = (ol )i, = 2x, = £,y )] (13)
D = ={a /kIx L Wy ). (14)

The nature of solutions for Eq. (9), .l also of solutions near the

singulevities of Eq. (7), depends upon the characteristic exponents

(A ) = (1/2)[(13 +C) % Ul/‘?j (15)

wiwre U = (B + Cj + 4{aD ~ BG). It is necessary to examine these

expanents near each of the singularities,

Gr. 1. xs=0, ys=0

For this singularity

Aoa )

{ C'—*a.x

B =3 D=0
y

+
Q
A

(B +C) = (o

(.D - BC) = -c,xcxy

=(B=-07>0
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If d‘xu'y < 0, a saddle point exists; if a‘cay > 0, a nodal point
exists, stable if both Oy and a, are negative and unstable if botn
¢ and a, &re positive, The situation is swmmarized in the stelility

"~

diagram of Fig, 2.

Gre 2, x =k, y_=0

For this singularity

A =20

B = (a y_/ky)Y where Y = ky - fy(k::)
C = :'ax

D = ~a £ 1(0)

(B+C) = (ayY/ky - ax)
(AD - BC) = axayY,’ky
Ua (B=-0C)220
In this case, the quantity Y 4s important. It can be found
easily from a graphical plo. relating to Eqe (7). In Fige 3 is plotted
the curve y =k

Y
locus of those valuzs of x and y which make the bracket in the

- fy(x) upon axes of x and y. The curve is the

numerator of Eq. (7) vanish, Any curve representing a solution for
Eq. (7) must cross this locus with horizontal slope. Thus, this curve
is the isocline for zers slope, dy/dx = 0, or for ¥ =0 in Eq, (2).
The ordinate for this curve, evaluated at x =k, is the quantity Y,
and is positive in Fige 3.

ER a.xo.yY/ ky > 0, 2 saddle point exists; if axayY/ ky( o, a
nodal point exists, stable if (B + C) < 0 and unstable if (R + C) >0,

The situation ic summarized i the stability diagram of Fige L.
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Fig. 2 Determination of ¥
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Gr, 3. x. =0 y.*" Kk

For this singularity

"

A £ 1(0
-ayy()

B ==
¥

(aj/kx)x wherz X = k=~ fx(gy)

o
D=0
(B+¢C) = (a.xX/kx - ay)
(AD - BC) ““x“yx/&
U=(B~-0C)?>0
This case is analogous to the one just preceding, Here, a plot of
the curve x =k = fx(y) as shown in Fig, 5 is useful. This curve is
the isocline for infinite slope of a solution curve for Eq. (7),
dy/dx =, or for x = 0 3in Eq. {(1)s The abscissa for this curve,
evaiuvated at y -~ Ey’ is the quantity X, and is positive.in Fige 5

The situation is summarized in the stability diagram of Fig, 6,

Gre he x =k - £(v), v, = k= fy(xs)

The number of singularities determined by these relations depends
upon the functions £ and gy‘ If these functions are nonlinear, as
for example Eqs, (3) and (4), numerical determination of X, and ¥y
may be a fairly tedious process, requiring the solution for the rocts
of an equation of high degree, Probably a simpler and more informative
approach is to resort to ancther grs .cal constructioﬂ.

Singular points in pgeneral are located at the intersection of

isocline curves corresponding to different slopes, i.e, to different

values of dy/dx. Thus, if the isoclines for zero slope, & =0 or

y = k& - fy(x), and the isoclines for infinite slope, x=0 or
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x=k_ = fx(y), are plotted, singularities are found at their inter—
sections. The number and location of the intersections will depend
uporn: fx and fy.

Quadratic funections, such as Egs. (3) and (4), iead to parabolic
curves for the isoclines, as in the example of Fig, 7, This figure is
like a combination of Figs. 3 and 5, but here the functions are such
that both X end Y are negacive, A maximum of four intersections,
and thus four singularities, can sccur with these parabolas, I the
coefficients of Egs. (3) and (4) are allowed to vary, the parabolic
curves change in shape and location, and the number of singularities
may be any intsger from zero to four inclusive, Morc complicated forms
of functions fx and fy might lead to even more singularities,

It is worth noting that in Fig. 7, the horizontal axis corresponds
to an isocline where y = 0, and the vertical axis corresponds to an
isocline where X = O, The intersections of the axes with each other
and with the parabolic curves lead to the first three singularities,

For the singularities of the fourth group,

A =~(a y/ky)ysfy' (xs) = =S8N

B = ~(ay/ky)ys = =8

C= -(ax/k&)xs = =R

D = -(ax/k&)xsfx'(ys) = <RN
where

Rs axxs/kx

G = R/S =0 kx/ak
Ssayys/k XxXys yxs
v

M £ (x) = d/dx[fy(xs)]
£1(y,) = d/clv[fx(ys)]

Quantities R and S can be found from known values of Uy @

it

N

i

y’

k ; and k, tvogether with values of x_  and y  teken from the
J )

)

i
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Fig. 8 Stability of Zcs. (1-2),

—

stable node or focus, S>0

Gr. b,

ol ik e mwwm&@,ﬁ T |

Ik |

Bl e

S 3 B A

sh G AP

paon




b e

I

 aedary b
Ay

4t

13.
graphical construction, Quantities M and N can be found from the

slopes of the isocline curves for y = 0 and x = C, s measured ot
the singularity. The igocline for y =0 is y = ky - fy(x) , which
has the slope dv/dx = =d/ cb:E’Cy(x):] = -fy' (x)e Thic sl;;é evaluated
at the singularity is dy/dx](x = = ~fy' (xs) ==l , Similarly,
the isocline fcr x =0 is x = k= fx(y) with the slope
ay/ax = (a/a)™ = {~/ay [5G} = [0 ) 7h Tt sore,
evaluated at the singularity is dy/d:{]. = [‘-f,:_' (y )]-l = ~1/N,
(y=yg) & * 78
Thoa, M and N can be determined from dircct umcasurvenent of the
slopes of the curves, or by numerical substitutiocn in the dervivaiives
of the isocline curves, M = fy'(xs) and N = £} (ys).
Important combinations of the coefficicnts are the follouiige.
(B+C) ==(R+8)==5G+1)
(AD = BC) = RS(MN = 1) = S°G(MN ~ 1)
U= (R=- s)2 + LRSIHN = ASZGE(G + 1/8)/4 - 1/2 + M’N]
The following solutions may exist, .
a. Saddle
GUN -~ 1) Do
b. Node
Both G(MN - 1) 0
and c-lrgc- + 1/G)/L - 1/2 + .wn;!\,o
Stable if S(G + 1) >0
Unstablc if &{(C + 1) <0
c. Focus
G[(G +1/G)/l = 1/2 + :4&1]< 0
Stable if S(G + 1) DO
Unstable if S(G+1)< o0

The situation is summarized in the stavility diagram of Fige. 8.

T s

i ol

4
*

Cads

e U PR TG




e e gy

————e

;

II.2 Numerical examplies from computer

In order to check these conclusicns concerning the solutions for
Egs. (1) and (2) a perticular pair of equations was ctudied witih an
electronic analog computer, The equations used were Egze (1) and (2)
with the quadratic forms of Egs. (3) and (4)e These quadratics are ihe
most complicated functions that can be handled with the availatle
computer, The connecticue for the computer are shown in Fig, 9« The

/e

nunerical values for the coefficients of the equations were

oy varied ay =1
k. =3 ky =
B & 1/2 By =]
Yy = V6 v, = Lk

These coefficients yield parabolic isoclincs that intersect at four
puints, one in each quadrant, and thus give a total of scven singularities,
The sclution curves for the equations, as plotted directly with
the analog computer, are shown in Fig. 10, 11, and 12, for which
o, = +1, =1, and -1/2, respectively. The iscclines for ¥ = 0 and
X = 0 are shown in Fige. 104, These same isoclines apply also to
Figs. 11 and 12, since a change in o does not change the isocline
curves, Various initial values ¢f x and y were uscd in ezch case,
and the resulting solution curves are shown. 7The direction of increasing
time is indicated by the arrowheads on these curves,
Important numerical data applying to the seven singularities for
each of the three values of a, are given in Table I, These data
used with the stability diagrams of Figs. 2, 4, 6, and 8 allow the
prediction ef the kinds of solutions that wpoly near each singularity.
The predictions are listed in Table I, The data for the Gr. L singu=

28

larities are plotted in Fig, 13, which is similar to I'ig. 8.
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Table 1

Leention and Types of Singularities for Examples

% =-(ax/gx)(kx =X =By nyz)x

§ = /K = 3 - Bx = 12y

a_ listed below a =1
X y
k =3 k= b
B, = /2 By = 1
Ve = 1/6 Yy = /4
psant a, | Xg Ve Y M l N ! R j
l.a 1 0 0 [ !
2.a ] 3 0 ~1.25] ! |
i 1 0 A -1,67 |
21.al 1 1.60] 1,76 1,801 1,09] 1,94| .53
Le2.al 1 3,32{=2,08 2,16{ =191 =,41j 1,11
he3eal 1 {=3,06] L.72 -4531 2,07{=1,L10!=1,02
Lbol&oa 1 '9-86 "'loa!:, "'3093 "2|97 1107 -302()
|
lnb —l 0 O
2.b |=1 3 0 -1,25
3,b =1 0 L -1,67 | .
Lelsb|=1 | 1.60] 1,76 ! 1.80] 1,09} 1,96 =.53|
Le2.bl=1 3.32{~2.08 L 2,16) ~,19; =,41}-1,11
LLnBlb -l ..3.0’6 4072 : "'.53 2.07 "'l.lO 1002
Loh, )=l |=9,86]|=10,4 ~3.93 —2.97111.7 3429
l.,c |-1/2{ o o}
2.c |=1/2] 3 o} -1.,25
3.¢ |=1/2} O L [-l.67
Lelecl=1/2] 1.60| 1,76 1.80] 1,09| 1.96] =.26
Le2.c|-1/2] 3,32|~2.08 2,16| =,19| =~.41] =55
Le3,c|=1/2{=3,06] 4,72 =.53] 2.07}-1,10] .51
boboci=1/2{~9.,26|-10.4 =3.931=2,971 1147 | 1,64
| |

19,
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The types of solutions predicted in this way are the same as

those found with the computer,

II.3 Sketch of solution curves

1+t is possible to sketch the general shapes of the solution curves

without having recourse tc 2 computer, This can be done from a

knowledge of the location and nature of the singularities, of the
isocline curves for y =0 and X =0, and of the asyiptotes for
sclution curves near a node or a saddle, Informcticn relating to the
singularities and the isoclines has been given above, The asyuptotes

are considered here,

It can be shown that the solution curves near the singwlarity

corresponding to a node or a saddle approach a definite slope as tine
6,7

approaches either plus or minus infinity. As time apprcaches nlus

infinity, the slope is
dy/dx | =m, = 4/(A, = B) = (A, = C)/D. (16)
Yy sk 1 1 1
As time approaches minus infinity, the slope is

dy/dx]w_m m, = A/(x2 - B) = (A, = C)D, amn

In these equations, 4, D, C, D are thc coefficients from Zg, (10),

A, is the more positive caaracteristic exponent and kﬂ is the less

1
positive characteristic exponent, as found from Eq. (15),
As an example, a sketch of the solution curves corresponding to
. ) L]
tho case of Fig. 1C is shown in Fig, l4. Isocline cuives for y =0

rgiiez

and % = G are plotted from the equations

- = Do = - - . =
y = Ct \g ky Byx 'yyx B y=0
x = 0: x=k =By ="y x =0

e mm e ww ew mm v em em mm s mm wm wm ee M e ww e s mm e W ws mw At e e ww cw e A mp ww mw e

6, Ae A, Andronow and C, E, Chaikin, Theory of Oscillatiors, (Princeton

_srar_L n-—nﬂnl Princaton. 191&0), che V.

Utilvoi ity Procs

7. B, G. Farley, Proc. IRE, 40, 1497, (1952)
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Their intersections locate the seven singularities, the natures of
which have been predicted in Table I.

The slope of a solution curve must change algebraic sign wvhencver
it crosses one of the iscclines, y =G or X = 0, Thus, with the
knowledge that the origin is an unstable node, so that the solution
curves near the origin in the first quadrant must have positive slope,
the signs of the slopes of the solution curves in each region can be
assigned, as showi, 3ecause the axes are also particular isoclines, a
solution curve can never cross either axis, and must reumain within the
quadrant in which it starts,

The values for the slopes of the asymptotes m and m, are
given in Table II. The equality of oy and ay in this exanple
causes m and m, for the node at the origin to be indeterrminate.
The asymptotes are plotted for each singularity in Fige l4.

The asymptotes are alse separatrix curves near a singularity.
Thus, the asymptote m, near Singularity 4.1 separates those solutien
curves that tend toward Singuwlarity 2 from those that tend toward
Singularity 3,

4 number of solution curves are sketched in Fig, 14, malding use of
the information collected there, These solution curves represer’ quite
accurately the true solutions, as found with the computer and shown in
Fige 10,

A solution curve near a focal point spirals about that point and
approaches it from no definite direction, Thus, there arz no asymptotes
associated with a focal point, and this aid to sketching sclution curves
is not available, This situation applies near the focal points of the

examples shown in Figs, 11 and 12,

i ———
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Table 11

Asymptotic Slopes for Example

S ngler ) i T
point = B € B )‘l )‘2 5 2
l.a 0 i s 0 1 1T T T —=""1=—== "
2.a ! © -.31 ' -1 -.5 -31 -1 -1438 0
3.a ~1 ~1 ~56 | O ~.56 | ~1 -2.25 | o
Lelea | ~,79 | ~olily | =453 ~58 1,19 | 1,16 | -1,25 1,08
L2, i 1.12 052 | =1,11 21 | 65 1 =12y 8,5 ~.63
sl .63 | -las | 1,02 0 o202, 1510 <167 | .23 l-l.27
Leliea | =103 | 2,61 | 3429 |~9.,78 | 13.0 ! -7.0 ~99 | 1.05
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25.
I1I, Special Case with no Squared Terms

The form used in writing Eqs. (1) and (2) is convenient in that the
parameters kx and ky represent the ultimste values of x and ¥y
when there i3 no coupling between the variables, This form is not well
adapted to apply to the case in which the terms in x2 and },2 are
missing on the right sides of the equations, It is simpler to consider
this latter case by itself, rather than to aLismpi a modification of
the preceding analysis to inciude it,.

The equations with no sguared terms are
- (ax/lg;)[lgc - £ () ]x (18)
¥ = (o /i) [k, - £, ]y (19)
where, again, fx(O) = 0, f:’_(O) = 0, and these functions cau b2
differentialsd. The ratio of these two equations is
k )[k - f (x]y

o (20)
dx (ax/kx)[k -t (y)lx

As beiore, near a singularity, x is replaced by (xs +u) and y by

(ys +v), giving

& ey { gty g Ju Lk - 5]} (21)
du (o /k) {[_ -~ £ly ):]u +l~X_,f Wy ﬂ }
where Iy t(x,) = d/dxrf (x )] and £ '(y ) = d/d,vrf (v _I’ and only
linear terms are retained, The coefficients are
A= -(a /k )y -y' (x.) (22)
B = (uy /lc )[k £,(x.)] (23)
c=(a/1<)E<-f (v9) (24)
D = ~{a/kIx £ 1 (y.). (25)

There are only two groups of singularities,
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Gr, 1. xg = O, v

For this singularity
A=0 cC= ay
B=ag D=0
y
The stability diagram is shown in Fig, 15,

f(x)=k

Gr, 2. fx(ys) =k, (x5 =k

For this singularity
3 em !{ =
A (ay/k:y)ysfy \xs) C=0
B =0 D o==lo/kjxt i(y,)

Quantities A and D must be calculated rrom the equations, The

stability diagram is shown in Fig. 16,

parg ]

An example of this epecial case is that for which

» 2
L(y) =By + vy (3)
2
£f(x) =B x+yx (
y( ) BX * ¥y (L)
the same forms used previously. If the quantities y;kk/ﬁf and
7 k /B are both positive, there are four singularitie: in Gre 2;
one occurring in each of the four quadrants. Furthermore, the algebraic

signs of X, and fy'(xs) arc the same, as are the signs of Tis and

fx'(ys). With these conditions, the sign of product AD is the same

as that of product axgy. Typical sclution curves are as shown in

Figs 17. With other relations of the parameters in the ecuations, the

solutions may be different, of course,
If in Eqe. (3) and (4), both % =0 and ¥y = Oy the original
equations recduce to
%= (ax/x )[:k - Bxy:lx (26)
¥ = e /x )k, -s_x]y. (27)
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These equations are those studied by Volterra., Only two singularities
exist, one at the origin =nd the other at the point Xy = k y/ 8 v?

5 e LR
Vg = K/Bye

IV, Special Case with one Squared Term

A special case, intermeciate in complexity between the most

general case considered first, and thai just discussed, is the following,

X = (ax/ky__) E-(x -x = fx(y)Jx (28)
y = (ay/ky) ES' = fy(xz]_y ) (29)

The x2 term is present in the firest equation but tlicre is no y2
term in the secind equation.

The coefficients applying near a singularity arc

A =-(a y/ky)ysfy'(xs) (30)
B = (ay/ky)Ecy - fy(xs)] (31)
¢ = (a /i, - 2x, - £,(y,)] (32)
D = ~(a x/kx)xsfx' (vg) (33)

There are three groups of singularities,

Gr. 1. xsao, ya=3

jod]
]
2}
)
L]
=)

The stability diagram is shown in Fig. 18,
© o

Gr. 2. x =k, y =0

[
n
(&]

C= —a,
“ o /i MK = £ (k)] D= £1(0)

It is necessary to calculate the value ¢f B from the equation, The

9}
1]

stability diagram is shown in Fig. 19,
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Gr. 3. x_ = k - fx(ys), fY(x ) = %{

-

A= -(a /ky)ysfy'(xs) = =S
B=0
C =

ot JATSNAY PR
(G}C/ l\x/Xs R

D= ~(axfk )x £ '(ys) = RN

K 8 X

whers R = axxs/gx G = R/S
S = ayys/¥y
M =

fy'(xs) N = fx’(ys)

The isoclines for y = O in this case are y = 0 and fy(xb_)= ky,
and for x =0 are x =0 and x = k& - fx(y). These isoclines are
plotted in Fig, 20, where fx(y) has been chosen to zive a parabolic
curve and fy(x) has been chosen to give a pair of vertical lincs.
Four singularities belonging to Gr, 3 exist. «Quantity N can be found
from the slope of the isocline for x = O at the sinpular point, as
was described in discussing the most general case. Quantity M must

be calculated from its defining equaticn,

The stability diagram for Gr. 3 is shown in Fig, 21,

V. Degenerate Cases

One degenerate case is that describsd by the equations

(e /k)(k, =~ x - y)x (34)

it

.
X

v = {a /% )k -3 =x)y. 35
y = ok )k -y = x)y (35)
These equations are ot tiic most general type, but the coefficients are
particularly simple. The isoclines for y =0 and X = O, other than
the two axes, are straight lines parallel to ons another, so that there
are no singularities in Gr. 4. If a, >0, ay > 0, and kxf> ky >0,

the only stable singularity is that at iy = kx, Y = 0, and the

solution curves are as shown in TFig. 22,
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32.

x g
in Egs. (34) and (35). This is the only combinati

A second degenerate case occurs if a_ =a_=a and kk = Ky = k

vion of parameters in
the general ejuations for which [k RS fx(y}] = ky -y - fy(x)] , 8C

that dy/dx = y/x. If a DO, the origin is an unstable node, An

infinity of stable points are locatsd

1 An
Re}e}

g the line vy =k - x, and

the solution curves are shown in Fig. 23,

VI. General Effects of Parameters

Some comments can be made about the effects of Lhe parameters that
appear in the general equations, Egs. (1) and (2). The coefficients
a. and ay are the basic gquantities ip deternining the growth rates,
Large positive values of these quantities tend to produce rapid growth,.
Quantities kx and ky determine the final values of x and ¥

when o and ay are positive and there is no coupling between x

and ¥y.

The functions fx(y) and fy(x) determine the shape of isocline
curves for X =0 and y = O, respectively, If these functions are
those of Egs. {3) and (4), the isoclines are parabolic in shape. The
parabeia for x = O aliways passes through the point x = Kx’ 7 = 0:
At this point the slope of the parabola is dy/dx = —I/BX. 1f B,
varies, the parabola moves as shown in Fig, 24, but its shape does not
change, The shape is determined by Vid and the effect of changes
in Y is shown in Fig. 25, The dotted line in each of these figurss
is the locus of the vertex of the paravola as it moves,

One type of solution that is of particular interest is that which
is oscillatory in nature, The simplest pair of cguations that gives

osscillations is the following
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X = (e.x - bxy)x. (36)
y= ~(ay - be)y. (37)

These are examples of Eqs, (18) and (19), where Gy = 8y OGO = -al,

y
at x_ = y/by = ky’ gL = a.x./bx = k,, For small changes near this

o.x/}sc = b, :xy/ky = =b_, fx(y) -y, fy(x) = x, A singularity exists

singuiarity, the following equations apply

u=- 8
(ayb x/by)v ‘ (38)
v = (ab y/bx)u (39)
£0 that
o+ ae u= 0. (40)

The solution for this equation is a periodic oscillation havir: the
angular frequency o = (axay)l’lz. In terms o the coefficients used
originally, oy and Gy determine the frequency of cscillation whiie

]Sc and ky locate the mean values of X and y about whicl oszcil-

lation takes place,

Only linear terms appear in the functions f‘y and fy in Egs. (35
and (37). If additional terms are introduced, a more complicated solu=
tion results., A simple example illustrating the effecis has exire

Fyes

terms in only one of the two equations,

. = - - 2 - . A
x (ax bxy .y dxx)k (1)
v = - - b x)y. !
y = ~(a, - bx)y (42)
The singularity about which oscillation may occur is located at Xy Vs
given by
2 =
a, bxys i dxxs =0 (43)
By, = byxs = 0; x, = ay_/b, ’ (44}
For small changes near this singuwlarity
i=-dxus= (hx +2cxy)v (45
v =) gt i45)
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y o+ dxxsﬁ + ay(ax + cxysz - dxgs)u = Q, (u7)
The term dx.x2 in Eq. (241) introduces damping, while both this temm
and the term cxyzx change the location of the singularity and medify
the frequency of osciilation,

In general, quadratic terms in functions ;x and fy, as in
Eqs. (3) and (4}, lead tc a modification of the frequency of oscil~
lation, to a change in the location of the singulority, and also,
perhaps, to additional sing:larities. So long as the terms x2 and yz
are missing, as in Dgs, (1€) and (19), coefficients B and C are
identically zero near tlhie singularity where oscillation occurs. Thus,
there can be no damping and the oscillation ramains periodic,

In the more general case of Rgs. (1) and (2), oscillation may
occur also, as was true in iigs. 11 and 12. IHowever, the presence of
the terms x? and y2 introduces damping, the algebraic sign of wiich
depends upon the signs and magnitudes of teims in the cquations, In
general, quantity (B + C) is not zero, and the osciliation either
builds up or decays, !.ith a particular adjustien: of coefficients, it
is possible to make (B + C) = 0, in which case a periodic solution
would :>xdist. Any small changes in coefficients would destroy this
periodicity, however, The amplitude of the peric.ic soluviion would
depend upcn initial conditions.

It does not appear thai 2 limit cycle, representing a periodic
solution with amplitude deterained solely by the cquations, can exist,
A limit cycle might occur about an unstable foecal point if a suitable

positive damping effect ceme into piay as the amplituds of the oscil-

lation increascd., In all the oxamples that htve been studied, an
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36.
unstable focal point always leads tc a solution that ultimately runs
away, as in Fig. 11,

All of the preceding discussion has been con- :ned with the
solution of Eqs. (1) and (2) in which only the relation between varialles
X and y at given instants in tirc is5 considered, Curves of y as a
function of x have been obtained with time as a parameter, but a
scale of time along these curves is not available, In general, it
appoars toc be quite difficult to find a solution for x, say, as a
function of time, Such a solution would reyuire that y be eliminated
from the twe equations, leaving a single egquation in x and t, This
single equation would be of second order and would contain a number of
nonlinear terms, In all but very simpie cases such as Egs. (36-37)
and (41-42), the soiution of this equation by conventional analytical

methods appears to be a hopeless tlask,
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PERSON OR ORPORATION, OR CONVEYING ANY RIGHTS OR .PERMISSION TO MANUFACTURE,,
USE OR SELL ANY PATENT ED INVENTION THAT "MAY IN ANY WAY BE RELATED THERETO.
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Because of our limited ‘supply, you are requested to return this copy WHEN IT HAS SERVED
YOUR PURPOSE so that it may be made available to other requesters. Your cooperztion
will be appreciaied.
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